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Abstract

Applications that involve the electronic transfer of credentials, value tokens, profiles, and
other sensitive information are quickly gaining momentum. Traditional attempts to introduce
electronic authentication, such as PKI and biometric verification, expose organizations to po-
tentially unlimited liability, lead to consumer fear, and stifle the adoption of new systems. To
overcome these barriers, innovative solutions are needed that address the entire spectrum of
security and privacy interests for all parties involved.

This paper is a technical overview of Digital Credentials. Digital Credentials are the digital
equivalent of paper documents, plastic tokens, and other tangible objects issued by trusted
parties. At the same time, they are much more powerful than their physical counterparts.
For example, individuals can selectively disclose properties of the data fields in their Digital
Credentials while hiding any other information. Digital Credentials also provide much greater
security. As a result, they can be used to securely implement objects that traditionally are made
identifiable in order to deal with certain kinds of fraud. Examples are diplomas, work permits,
access cards, and drivers’ licenses.

1 Introduction

Around the world, influential organizations are rushing to provide individuals with digital identity
certificates that will be the sole means of participating in their systems. Among the front-runners
are telecommunication organizations, health care providers, mobile service providers, financial
institutions, and state and federal governments. A digital identity certificate is just a sequence of
zeros and ones, and so it can be transferred electronically and can be verified with 100 percent
accuracy by computers. Each certificate contains a unique secret key to enable its holder to prove
ownership of the certificate, and is digitally signed by its issuer to guarantee unforgeability.

Digital identity certificates are not appropriate in many situations, because their goal is to
enable identification of their holder; they are the digital equivalent of passports. Most people would
strongly object to having to identify themselves in every interaction they undertake. Digital identity
certificates are in fact much more privacy-invasive than passports and other traditional proofs of
identity, because they enable all of an individual’s actions to be linked and traced automatically
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and instantaneously, by a variety of parties. Moreover, the large-scale use of personal identifiers
greatly encourages identity theft.

Nevertheless, often at least one of the parties in an interaction needs to know whether the other
party is authorized to perform a certain action. Typically, authorization is granted on the basis of a
person’s accomplishments, privileges, personal characteristics, and so on, rather than on the basis
of his or her identity. This is why people use medical prescriptions, stamps, subway tokens, cinema
tickets, drivers’ licenses, diplomas, coins and banknotes, birth certificates, access cards, and so on.

Digital Credentials

Digital Credentials were proposed in 1993 by Brands [13] (and improved in subsequent work) to
provide a secure way to implement all these and other objects in a fully digital manner, without
eroding the privacy of their holders. For an up-to-date treatise, see Brands [15]. Digital Credentials
enable their holders to determine for themselves when, how, and to what extent information about
them is revealed to others, and to what extent others can link or trace this information. Individuals
need not trust third parties to protect their privacy: even if all the parties that rely on Digital
Credentials and all the Digital Credential issuers actively conspire and have unlimited computing
resources, they cannot learn more than what can be inferred from the assertions that individuals
willingly and knowingly disclose. This seemingly very strong privacy guarantee is not a new
concept: today, when you spend a coin, cast a vote, or use a cinema ticket, you are anonymous.

Conceptually, Digital Credentials borrow heavily from seminal work on electronic privacy by
Chaum [21, 22, 23, 27, 29, 31] in the period 1982–1992. In particular, Chaum [19, 20, 24, 34] ad-
vocated the use of credentials, which he defined [24] as “statements concerning an individual that
are issued by organizations, and are in general shown to other organizations.” Enabling individu-
als to build pseudonymous relations with organizations is just one specific application of Digital
Credentials, though, and arguably not among the most interesting ones.

Although it is helpful to think of Digital Credentials as the digital equivalent of stamps, gift cer-
tificates, and other tangible non-identity tokens, they are actually much more powerful. Amongst
others, the holder of a Digital Credential can selectively disclose a property of the attributes that the
issuer encoded into the Digital Credential, without revealing any other information. (As defined
by X.501 [18], an attribute is “information of any type.”) This goes beyond what can be achieved
in the physical world with a paper-based certificate and a marker. For example, the holder of a
citizenship Digital Credential can demonstrate that her citizenship is not American or that she is
European, without revealing her citizenship. In fact, Digital Credentials encompass identity cer-
tificates as a degenerate case, since their issuers can always encode identifier attributes that Digital
Credential holders can disclose at their discretion when showing their Digital Credentials.

Security benefits

Digital Credentials offer much greater security than physical non-identity objects. For example,
a Digital Credential can contain a built-in identifier that can be uncovered by a central party only
if the Digital Credential is shown more than a predetermined number of times. Furthermore, by
encoding confidential data of the applicant into a Digital Credential the issuer can discourage
lending of that Digital Credential, even though the applicant can always hide the confidential data
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when using the Digital Credential. We will see later on in this paper how to realize these two
counterintuitive properties. Additional security features become available when Digital Credentials
are embedded in smartcards or other tamper-resistant devices.

Digital Credentials also offer security benefits over digital identity certificates. By placing
identity at the heart of transactions and communications, identity certificates greatly increase the
risk of identity fraud. Also, nothing discourages certificate holders from giving away copies of
their identity certificates, unless the certificates are accepted in large-scale applications where their
owners run a serious personal risk. Furthermore, identity certificates are often used as authenticated
pointers to central database entries, but there is no guarantee that these entries are relevant and
accurate; Digital Credentials, in contrast, can contain all the data that verifiers are interested in.
Digital Credentials overcome these shortcomings.

As a result of their much greater security, Digital Credentials can safely be used in all kinds
of applications where the use of physical non-identity objects is considered insecure. That is, they
can be used to implement not only gift certificates, railway tickets, and so on, but also diplomas,
work permits, birth certificates, and other objects that traditionally identify their holder in order to
deter certain kinds of fraud.

Note that Digital Credentials encompass identity certificates as a special case: an identifier is
just one of infinitely many attributes that can be encoded into a Digital Credential, and the Digital
Credential holder can disclose it whenever desired.

Contents of this paper

The goal of this paper is to provide insight into the cryptographic techniques of Brands [15] for
designing Digital Credentials, not to give a formal treatise. Consequently, most of the descriptions
center around example cases, and mathematical proofs are replaced by proof outlines. For the
same reason, optimizations and variations are not taken into consideration.

Section 2 discusses the basics of Digital Credentials. Section 3 describes how Digital Cre-
dential holders can selectively disclose attribute properties while hiding any other information.
Section 4 shows how the selective disclosure techniques can be exploited to deter lending and dis-
carding of Digital Credentials. Section 5 describes two protocols for issuing Digital Credentials,
and discusses how to combine them with the showing protocol. Section 6 discusses the design of
Digital Credentials that can be traced by a central party if and only they are shown more times than
allowed. Section 7 explains how Digital Credential verifiers can protect their own privacy. Sec-
tion 8 discusses the security benefits of smartcards, and shows how to incorporate them without
compromising privacy. Section 9 concludes the paper.

2 Basics

Digital Credentials are issuedto applicants by trusted parties, referred to as Credential Authorities
(CAs). They are shownby Digital Credential holders to verifiers. In a specific application, context-
specific names may be used. In an electronic voting system, for example, issuing corresponds to
obtaining a ballot and showing is the equivalent of casting a vote. In an electronic cash system, a
Digital Credential is an electronic coin or cheque, issuing corresponds to the withdrawal of coins
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or cheques, and showing corresponds to payment.
In line with cryptographic tradition, we will use the fictitious characters Alice and Bob to refer

to a Digital Credential holder and a Digital Credential verifier, respectively.
There can be many CAs that each issue their own Digital Credentials, in the same way as voting

ballots, drivers’ licenses, and credit reports are usually issued by different organizations.

Basic Digital Credential model

The CA has its own key pair for digitally signing messages. When issuing a Digital Credential
to Alice, the CA through its digital signature binds one or more attributes to a Digital Credential
public key, the secret key of which only Alice should know. The whole package that Alice receives
is called a Digital Credential. A “demographic” Digital Credential, for example, might specify
Alice’s age, number of kids, marital status, and citizenship, all tied to a single public key by one
digital signature of the CA.

The primary reason for the presence of a public key within the Digital Credential is to prevent
a replay attack. This is an attack whereby Bob (or a wiretapper) reuses the Digital Credential data
that Alice showed, in an attempt to pass as the owner of the Digital Credential. Replay attacks
are prevented as follows. When Alice shows her Digital Credential to Bob, she not only sends
her Digital Credential public key and the CA’s signature, but she also digitally signs a nonceusing
her secret key. A nonce is a random number, the concatenation of Bob’s name and a counter, or
any other fresh data provided by Bob. Bob cannot replay the data, since in each showing protocol
execution a new nonce must be signed, which requires knowledge of Alice’s secret key.

In the showing protocol, Alice also selectively discloses a property of the attributes in her
Digital Credential, while hiding any other information about them. For example, when showing
her demographic Digital Credential, Alice may decide to disclose the fact that she has kids, without
revealing how many and without revealing any information about the other attributes in her Digital
Credential. To convince Bob that the claimed property is true, Alice’s signature on Bob’s nonce
doubles up as a proof of correctness. As we will see in the course of this paper, we can in fact
exploit Alice’s digital signature to achieve many security properties at the same time. This design
principle contributes to making Digital Credentials as compact and efficient as possible.

To ensure the untraceabilityof a Digital Credential, Alice must communicate with Bob over an
anonymous communication channel. In the issuing protocol, however, reliance on an anonymous
channel is inappropriate. Indeed, in many applications Alice will need to identify herself to the
CA to enable the CA to retrieve or to validate the attributes that Alice wants to have certified.
Identification to the CA may also be required by law, in the same manner as anonymous bank
accounts are not accepted in many countries. Even if Alice may obtain Digital Credentials from
the CA without identifying herself (as is traditionally the case for stamps, cinema tickets, and
so on), it may be impractical to remain anonymous.1 How, then, is the untraceability of Digital
Credentials guaranteed? Since Alice always reveals the Digital Credential public key and the CA’s
signature when showing a Digital Credential, the CAmust never see these two data elements when

1For example, in many situations the CA will want to charge a fee for each Digital Credential. Whereas Alice
can buy things anonymously in the physical world by using cash, no anonymous payment method is widely available
today. (Interestingly, as we will see later on, Digital Credentials can be used straightforwardly to build an anonymous
electronic cash system.)
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it issues the Digital Credential to Alice. After all, they are unique bit strings, and our privacy threat
model allows Bob and the CA to collude in trying to trace Alice. At the same time, Alice must
not be able to blind the attributes the CA wants to encode into her Digital Credential, because that
would enable her to modify them.

To achieve these two properties, Section 5 will use a technique called restrictive blinding. This
technique is not a special case of Chaum’s blind signature paradigm [22, 23, 24, 25, 26, 27, 30, 31],
which does nothing to limit Alice in the kind of blinding operations she can perform. “Ordinary”
blind signatures have many drawbacks that make them unsuitable for most real-life applications.
For example, it is not possible for the CA to encode attributes that can be disclosed in certain cir-
cumstances but may remain hidden in others; blind signatures cannot discourage the unauthorized
lending and discarding of certified data; and, it is not know how to securely and efficiently incorpo-
rate blind signatures into smartcards without destroying privacy. For an extensive discussion of the
drawbacks of ordinary blind signatures, see Brands [15, Section 1.2.2]. The notion of restrictive
blinding also differs from Chaum’s notion of one-show blinding [21, 29]. The latter concerns a
property of an issuing protocol in combination with a showing protocol, while restrictive blind-
ing is a property of the issuing protocol only. In particular, restrictive blinding has nothing to do
with restricting the number of times a certificate may be shown. One special use of restrictive
blinding is to construct practical one-show blind signature schemes (see Section 6), but its general
applicability is much broader.

Note that if Alice shows the same Digital Credential more than once, then Bob learns that
these showing protocol executions were performed by the same individual; actions involving the
same Digital Credential are linkable. Often, linkability is undesirable. If Alice is identified in
one protocol execution then all her past and future actions involving the same Digital Credential
become traceable as well. Identification can take place indirectly: if Alice discloses a different
property each time she shows the same Digital Credential, then each new disclosure reduces the
set of Digital Credential applicants that could have been issued that Digital Credential. For this
reason, Alice should not reuse a Digital Credential too often; from a privacy perspective, single
use is optimal. With today’s computers and electronic networks, retrieving several “versions” of
the same Digital Credential (i.e., Digital Credentials with the same attributes encoded within them,
but each with their own Digital Credential public key) is hardly less efficient than getting a single
one, and Alice can request new batches later on as needed (possibly by requesting anonymously
refreshed versions of a Digital Credential, as will be explained in Section 5).

Figure 1 provides a schematic overview of this basic model, in which Alice shows one of
several versions of a demographic Digital Credential to a medical organization that wants to know
her marital status and citizenship.

Optionally, Bob deposits the showing protocol transcript(i.e., the data that Alice sends to Bob)
to the CA (or another central party). This enables the CA to detect fraud with Digital Credentials
that may be used only a limited number of times (see Section 6), to keep track of the number of
customers that Bob serves, to gather statistics on disclosed attribute properties, or to perform other
administrative tasks. Deposit can take place either during the showing protocol execution or at a
suitable moment afterward; the former is an onlinedeposit, the latter is an off-linedeposit.
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Figure 1: Basic Digital Credential model.

Encoding attributes into a Digital Credential

The issuing protocol that will be described in Section 5 enables the CA to encode an arbitrary
number of attributes into a single Digital Credential. Here is how l ≥ 1 attributes, (x1, . . . , xl),
end up encoded in a Digital Credential:

• The tuple
(x1, . . . , xl, α)

is Alice’s secret key for the Digital Credential. Alice generates α at random from Zq during
the issuing protocol. Even though Alice may disclose some or even all of the attributes to
Bob in the showing protocol, she keeps α secret at all times; this ensure that only she knows
the entire secret key.

• The Digital Credential public key is equal to the product

gx1
1 · · · gxl

l hα
0 .

The elements g1, . . . , gl, h0 have been generated by the CA at random from a group Gq of
prime order q; they are part of its public key. For a technical reason that will become apparent
shortly, h0 should not be equal to 1, so that it is a generator of Gq.
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(The actual form will be slightly more complex, for reasons that will be addressed in Section 5.)
The Digital Credential public key reveals no information about x1, . . . , xl, because many secret
keys correspond to the same public key. Specifically, for any public key h ∈ Gq and any attribute
tuple (x1, . . . , xl), there is exactly one α ∈ Zq that would make the match: take α as the discrete
logarithm of h/(gx1

1 · · · gxl
l ) with respect to the generator h0. Since Alice generates α at random

and keeps it secret, h leaks no information about x1, . . . , xl. For this reason, the number α is
called a blinding factor. (This is a generalization of the special case l = 1, which has been used
as a commitment scheme by, amongst others, Chaum and Crepeau [16], Chaum and van Antwer-
pen [36], Chaum [32], Boyar, Kurtz, and Krentel [8], Pedersen [49], van Heijst and Pedersen [56],
and Okamoto [48].)

At the same time, the following basic security property holds (see Brands [15, Proposition
2.3.3.]).

Property 1 Regardless of the choice ofl, assuming it is infeasible to compute discrete logarithms
in Gq, Alice cannot compute a Digital Credential public key for which she knows more than one
secret key.

(This property was first proved by Brands [10]; earlier on, Chaum, van Heijst, and Pfitzmann [37,
38] proved collision-intractability for the case of fixed l.) Consequently, by signing the Digital
Credential public key the CA binds a unique attribute tuple to Alice’s Digital Credential, albeit in
an indirect manner: the CA’s signature binds Alice’s public key, which in turn binds Alice’s secret
key, which contains all the attributes.

The following property is an immediate consequence of Property 1.

Property 2 Assuming it is infeasible to compute discrete logarithms inGq, Bob cannot compute
any secret key when presented with Alice’s Digital Credential public key, regardless of which prop-
erty of(x1, . . . , xl) Alice discloses to him.

Note that even if Alice discloses all of (x1, . . . , xl), computing Alice’s secret key still requires
Bob to compute the discrete logarithm of h/(gx1

1 · · · gxl
l ) with respect to h0. Therefore, Alice can

disclose arbitrary attribute properties without facilitating a replay attack.
Many constructions for Gq are known for which it is believed infeasible to compute discrete

logarithms. One choice for Gq is a subgroup of Z
∗
p, where p is a prime such that q evenly di-

vides (p − 1). Another choice is an elliptic curve of order q over a finite field. In any case, it is
recommended that q is at least 160 bits.

Note that x1, . . . , xl must all be numbers in Zq, because q is the order of Gq. How to map
meaningful attribute information to numbers in Zq is up to the CA. It could specify efficient map-
pings in a public list (e.g., Alice’s gender can be expressed by a single bit, and her citizenship by
a number between 0 and 266) or use encodings that enable anyone to infer the meaning of xi from
xi itself (e.g., Alice’s citizenship represented in ASCII). The interpretation of each xi depends on
the application at hand. Here are two examples:

• In an electronic coin, x1 could specify the denomination, currency, and expiry date of the
coin, and x2 could specify a negotiable quality that Alice might want to reveal to Bob in
return for a discount.
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• In a national ID card, x1 could represent Alice’s name, x2 her place of birth, x3 her gender,
x4 her child support payments, x5 her divorce status, x6 her age, and so on.

The CA can hash attributes that cannot be represented by a number in Zq by using a collision-
intractable hash function; to disclose these attributes, Alice discloses the preimages for the corre-
sponding xi’s. However, the number of values that an attribute can take on must be limited (unless
Alice can hide the attribute when showing the Digital Credential), otherwise the CA can identify
Alice in the showing protocol by encoding a unique attribute value into her Digital Credential. In
light of this, the approach of publishing a list of public mappings is usually preferable; the CA
could publish this list along with its public key, and sign it using its secret key.

3 Showing a Digital Credential

At this stage it is not obvious at all how the CA can digitally sign a public key without seeing that
public key and its own signature, while being convinced that the public key is bound to the right
attributes. For the moment we will simply assume that a Digital Credential can be issued in this
way, and defer a discussion to Section 5. The reason we first consider the showing protocol is to
simplify the exposition.

Signed proofs

As explained in the previous section, to show a Digital Credential to Bob, Alice transmits to him the
Digital Credential public key and the CA’s digital signature. In addition, she selectively discloses a
property of the attributes and digitally signs a nonce using her secret key, to prevent replay attacks.

In our design, Alice’s digital signature is derived from a proof of knowledge. Informally, this
is a protocol by means of which one party can convince another that it “knows” a secret key
corresponding to its public key; see Goldwasser, Micali, and Rackoff [45] for general reflections.
In our case, Alice must convince Bob that she knows a secret key (x1, . . . , xl, α) corresponding to
a Digital Credential public key, h = gx1

1 · · · gxl
l hα

0 . Figure 2 describes a showing protocol using
a simple proof of knowledge that does not leak Alice’s secret key. The symbol ∈R means that
the variable on its left is chosen independently and uniformly at random from the set specified on
its right, and “sign(h)” denotes the signature of the CA on the Digital Credential public key. The
number c is Bob’s challenge, and the numbers r1, . . . , rl+1 are Alice’s response(s). It is easy to
see that the verification relation for r1, . . . , rl+1 holds if Alice knows (x1, . . . , xl, α) and follows
the protocol. The number a is called Alice’s initial witness. The special case l = 0 is the Schnorr
proof of knowledge [52], while the case l = 1 is an optimization of Okamoto’s extension [48, page
36] of the Schnorr proof of knowledge.

Bob cannot compute Alice’s secret key, nor any other secret key corresponding to h:

• A simulatorcan produce transcripts of protocol executions without knowing a secret key:
generate a random challenge c, generate (r1, . . . , rl+1) at random, and compute a such that
the verification relation holds. This resulting transcript has the same probability distribu-
tion as what Bob obtains when he follows the protocol. Bob could choose c from another
probability distribution that cannot be simulated, though, and so this is not a proof that Bob
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Alice Bob

w1, . . . , wl+1 ∈R Zq

a := gw1
1 · · · gwl

l h
wl+1
0

h, sign(h), a−−−−−−−−−→
c ∈R Zq

c←−−−−−−−−−
r1 := cx1 + w1 mod q
...
rl := cxl + wl mod q
rl+1 := cα + wl+1 mod q

r1, . . . , rl+1−−−−−−−−−→
hca

?
= gr1

1 · · · grl
l h

rl+1

0

Figure 2: Proof of knowledge for a Digital Credential public key.

cannot learn Alice’s secret key. If c would come from a small challenge set, instead of from
Zq, then simulation is possible regardless of how Bob generates c: the simulator guesses the
challenge c that Bob will produce and forms a := h−cgr1

1 · · · grl
l h

rl+1

0 for randomly chosen
“responses,” and repeats this experiment until it correctly guesses c. This proves that for
small challenge sets Bob cannot learn anything, since everything he obtains from Alice he
could have generated himself. In our case the challenge set is large, which causes the sim-
ulation to take much too long, but it nevertheless suggests that Alice’s secret key does not
leak.

• If Bob does not know all the xi’s a priori, then we can rigorously prove that Alice’s secret key
does not leak. Namely, Bob cannot distinguish which particular secret key Alice uses in the
protocol; see Brands [15, Proposition 2.4.8] for a simple proof. We already know that h itself
does not leak this information. Therefore, if after a certain number of protocol executions
Bob can compute a secret key, that key will differ with significant probability from the one
that Alice knows. This would provide a way for Alice and Bob to jointly generate a Digital
Credential public key for which they know more than one secret key, which according to
Property 1 is infeasible. (The notions of so-called witness-indistinguishability and witness-
hiding, and the general technique of using the first to prove the second, are due to Feige and
Shamir [42].)

At the same time, Alice cannot trick Bob into accepting her responses without her actually knowing
a Digital Credential secret key, for the following reason. Suppose that Alice can come up with
an initial witness a for which she can provide correct responses for two different challenges, c
and c′. Denote the two response sets by (r1, . . . , rl+1) and (r′1, . . . , r

′
l+1), respectively. From
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hca = gr1
1 · · · grl

l h
rl+1

0 and hc′a = g
r′1
1 · · · gr′l

l h
r′
l+1

0 it follows that

h = g
(r1−r′1)/(c−c′)
1 · · · g(rl−r′l)/(c−c′)

l h
(rl+1−r′l+1)/(c−c′)
0 .

That is, ((r1 − r′1)/(c − c′), . . . , (rl − r′l)/(c − c′), (rl+1 − r′l+1)/(c − c′)) is a secret key corre-
sponding to the Digital Credential public key h, and Alice can compute it from the two challenges
and the corresponding response sets. In other words, Alice cannot provide responses to more
than one challenge unless she actually knows a secret key corresponding to the Digital Creden-
tial public key. The only way in which Alice can cheat is by correctly guessing c and sending
a := h−cgr1

1 · · · grl
l h

rl+1
0 to Bob, for arbitrarily chosen “responses” (r1, . . . , rl+1); this has success

probability 1/q, which is negligible because q is very large.
To transform the proof of knowledge into a digital signature by Alice, the challenge is pro-

vided by a “virtual” verifier instead of by Bob, in accordance with a technique due to Fiat and
Shamir [44]. Specifically, Alice sets c := H(h, a, m), where H(·) is a strong one-way hash func-
tion specified in public and m is an arbitrary message that at the minimum contains a nonce of Bob
to prevent replay. The outputs of H(·) are less than q. For reasons that will become apparent in
Section 6, we will assume that it is infeasible to find collisions for H(·). The tuple (a, r1, . . . , rl+1)
is Alice’s digital signature on the message m.2 See Figure 3 for the resulting showing protocol; it
is a generalization of the Schnorr signature scheme [52]. (The symbol “||” denotes string concate-
nation.) Because Alice’s digital signature is derived from a proof of knowledge, it is also called a
signed proof.

Note that a is hashed along when forming c. This ensures that a cannot be formed in a manner
that depends on c. Following Pointcheval and Stern [51] and Pointcheval [50], one can prove
the unforgeability of the resulting digital signatures in the so-called random oracle model; see
Brands [15, Proposition 2.5.4]. The only way to produce digital signatures with respect to the
Digital Credential public key h is by knowing a secret key, which cannot be inferred by examining
previously produced digital signatures (even if Bob chooses his messages m in a clever fashion).
Thus replay attacks are prevented.

Alice can rapidly compute her Digital Credential public key, the initial witness a, and other
products of powers of g1, . . . , gl, h0, by using a basic technique known as simultaneous repeated
squaring.

Signed proofs with selective disclosure

The above digital signature scheme is a step in the right direction, but it does not support selective
disclosure. If Alice claims a property about the attributes in her Digital Credential, how does Bob
know that this claim is correct? Alice’s digital signature should prove not only that she knows
a secret key, but also that the attributes in her Digital Credential meet the property she claims.
Generic zero-knowledge solutions, as proposed for instance by Feige and Shamir [43] and Bellare,

2If Gq is a subgroup of Z
∗
p, it is more efficient, but as secure, for Alice to send (c, r1, . . . , rl+1) instead of

(a, r1, . . . , rl+1), because the binary length of q can be much smaller than that of p. Bob can verify (c, r 1, . . . , rl+1)
by checking that c = H(h, gr1

1 · · · grl

l h
rl+1
0 h−c, m). Alternatively, Alice sends a one-way hash of a instead of a, and

the verification relation is modified correspondingly. We will not consider optimizations like these any further, because
they distract from gaining insight into our techniques.
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Alice Bob

m := nonce|| . . .
m←−−−−−−−−−−−−−−−−−−−−

w1, . . . , wl+1 ∈R Zq

a := gw1
1 · · · gwl

l h
wl+1

0

c := H(h, a, m)
r1 := cx1 + w1 mod q
...
rl := cxl + wl mod q
rl+1 := cα + wl+1 mod q

h, sign(h), (a, r1, . . . , rl+1)−−−−−−−−−−−−−−−−−−−−→
c := H(h, a, m)

hca
?
= gr1

1 · · · grl
l h

rl+1

0

Figure 3: Alice’s digital signature on Bob’s message m.

Jakobsson, and Yung [3], are highly impractical, because the claimed properties must be encoded
into Boolean circuits and auxiliary commitments must be used for each gate.

The solution, as proposed by Brands [9], exploits the fact that the proof of knowledge in Fig-
ure 2 works regardless of the choice of (g1, . . . , gl, h0). In what follows we use the following termi-
nology: (x1, . . . , xl, α) is called a representationof h with respect to the base tuple (g1, . . . , gl, h0).

A simple example. Suppose for simplicity that Alice wants to do the electronic equivalent of
crossing out all but one of the data fields on a paper certificate. That is, she sends h and the CA’s
digital signature on h to Bob, and discloses a value y1 ∈ Zq that supposedly equals x1. If Alice’s
claim is valid, then h/gy1

1 = gx2
2 · · · gxl

l hα
0 and so she knows a representation of h/gy1

1 with respect
to the base tuple (g2, . . . , gl, h0). Conversely, if Alice can prove knowledge of a representation of
h/gy1

1 with respect to (g2, . . . , gl, h0), this means she knows (y2, . . . , yl+1) such that

h/gy1
1 = gy2

2 · · · gyl
l h

yl+1

0 ,

and so
h = gy1

1 gy2
2 · · · gyl

l h
yl+1

0 .

The tuple (y1, . . . , yl+1) must be Alice’s secret key, since according to Property 1 she cannot know
more than one secret key for a Digital Credential public key. Therefore, x1 = y1 mod q.

To prove knowledge of h/gy1
1 with respect to the tuple (g2, . . . , gl, h0), Alice applies the signed

proof of Figure 3, but with h/gy1
1 replacing h and (g2, . . . , gl, h0) replacing (g1, . . . , gl, h0). By

expanding the resulting expressions, so that everything is expressed in terms of products of powers
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Alice Bob

m := nonce|| . . .
m←−−−−−−−−−−−−−−−−−−−−−−

w2, . . . , wl+1 ∈R Zq

a := gw2
2 · · · gwl

l h
wl+1

0

c := H(h, a, F, m)
r2 := cx2 + w2 mod q
...
rl := cxl + wl mod q
rl+1 := cα + wl+1 mod q

h, sign(h), y1, (a, r2, . . . , rl+1)−−−−−−−−−−−−−−−−−−−−−−→
c := H(h, a, F, m)

hca
?
= gy1c

1 gr2
2 · · · grl

l h
rl+1

0

Figure 4: Signed proof of x1 = y1.

of g1, . . . , gl, h0, the protocol in Figure 4 results. (The expansion will make it much easier to
understand our later techniques, and is also desirable from a computational viewpoint.)

The symbol F that is hashed along when forming c represents a unique description of the
attribute property that Alice demonstrates. If the properties that may be demonstrated are all of the
form x1 = y1 mod q, then it suffices to hash along y1. If, however, the space of attribute properties
is larger, more information is needed to identify the demonstrated property. If F would be left
out, then Alice could form a and r2, . . . , rl+1 in the same manner as in Figure 3, and the result
would “prove” that y1 = x1 + (w1/H(h, a, m)) mod q. Hashing along y1 ensures that y1 cannot
be formed after c has been formed. In the random oracle model one can prove the security of the
resulting signed proof; see Brands [15, Proposition 3.3.6].

Bob cannot learn any information about Alice’s attributes beyond the fact that x1 = y1 mod q,
regardless of the manner in which x1, . . . , xl have been chosen. In the example this is intuitively
clear, since Alice “chops off” gx1

1 and then does a signed proof for the “remainder;” we already
saw that the protocol of Figure 3 hides all information about the attributes. For a general proof, see
Brands [15, Proposition 3.3.4].

Demonstrating linear relations. It is easy to see how to extend this technique so that Alice can
convince Bob of the values of several attributes at once. The resulting protocol, which was first
proposed by Brands [13], corresponds to disclosing several data fields on a paper certificate and
crossing out the rest. More generally, Alice can demonstrate attribute formulae that connect linear
relations by zero or more AND connectives. This ability, which does not have a simple analogue
in the physical world, is of practical interest for at least two reasons:
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• If the CA only certifies attribute values that are 0 or 1 (denoting the absence or the presence
of a quality, say), then Alice can demonstrate to Bob that she meets exactly s ≥ 0 out of
t ≥ s qualities by proving that x1 + · · ·+ xt = s mod q.

• As we will see in Section 5, in our issuing protocol the values that the CA encodes into
a Digital Credential are in fact not the attribute values themselves but the products of the
attribute values with a blinding factor. Consequently, Alice must be able to prove certain
linear relations in order to disclose individual attribute values.

By way of example, consider a Digital Credential containing three attributes, h = gx1
1 gx2

2 gx3
3 hα

0 ,
and suppose that Alice wants to prove the following attribute property F to Bob:

(x1 = 2x3 + 3 mod q) AND (x2 = 4x3 + 5 mod q).

If this formula holds true, then

h/(g3
1g

5
2) = (g2

1g
4
2g3)

x3hα
0 .

Consequently, Alice can prove knowledge of a representation of h/(g3
1g

5
2) with respect to the tuple

(g2
1g

4
2g3, h0). As before, this ability also suffices to convince Bob. After substituting h/(g3

1g
5
2)

and the new base tuple, (g2
1g

4
2g3), h0), into the proof of Figure 3, and expanding the resulting

expressions, the protocol in Figure 5 results.

Alice Bob

m := nonce|| . . .
m←−−−−−−−−−−−−−−−−−−

w1, w2 ∈R Zq

a := g2w1
1 g4w1

2 gw1
3 hw2

0

c := H(h, a, F, m)
r1 := cx3 + w1 mod q
r2 := cα + w2 mod q

h, sign(h), F, (a, r1, r2)−−−−−−−−−−−−−−−−−−→
c := H(h, a, F, m)

hca
?
= g2r1+3c

1 g4r1+5c
2 gr1

3 hr2
0

Figure 5: Signed proof of (x1 = 2x3 + 3) AND (x2 = 4x3 + 5).

Demonstrating a negation. On now to another selective disclosure technique, for proving that
an attribute in a Digital Credential does notequal a certain value. Suppose by way of example that
Alice has been issued a Digital Credential containing a single attribute, h = gx1

1 hα
0 , and she wants

13



to prove that x1 �= y1 mod q. If indeed x1 �= y1 mod q then there exists an ε �= 0 mod q so that
x1 = y1 − ε mod q, and so

g1 = (gy1
1 /h)1/εh

α/ε
0 .

On the other hand, if Alice knows z1, z2 such that g1 = (gy1
1 /h)z1hz2

0 , then hz1 = gy1z1−1
1 hz2

0 . If
z1 = 0 mod q then Alice would know the discrete logarithm of g1 with respect to h0; it equals
z2. Therefore, z1 �= 0 mod q and so h = g

y1−1/z1

1 h
z2/z1

0 . But then it follows from Property 1 that
x1 = y1 − 1/z1 mod q, which is not equal to y1, as Alice intended to demonstrate. In other words,
Alice can demonstrate that x1 �= y1 mod q by proving knowledge of a representation of g1 with
respect to (gy1

1 /h, h0).
Again, for security a description of the formula must be hashed along when forming c.

Demonstrating properties with AND and NOT connectives. By combining the previous tech-
niques, Alice can demonstrate attribute formulae combining linear relations by one NOT connec-
tive and arbitrarily many AND connectives. By way of example, consider a Digital Credential
containing three attributes, h = gx1

1 gx2
2 gx3

3 hα
0 , and the following attribute formula F :

NOT(x1 + 3x2 + 5x3 = 7 mod q) AND (3x1 + 10x2 + 18x3 = 23 mod q).

With ε denoting 7− (x1 + 3x2 + 5x3) mod q, this formula is equivalent to the statement that there
exists an ε �= 0 mod q such that

(x1 = 1 + 4x3 − 10ε) AND (x2 = 2 − 3x3 + 3ε).

By substitution we get

g10
1 g−3

2 = (g1
1g

2
2/h)1/ε(g4

1g
−3
2 g3)

x3/εh
α/ε
0 .

Consequently, if F holds true then Alice can prove knowledge of a representation of g10
1 g−3

2 with
respect to (g1

1g
2
2/h, g4

1g
−3
2 g3, h0). This is also sufficient to convince Bob, as can be seen by follow-

ing the same line of reasoning as before. The resulting protocol is depicted in Figure 6.

Other selective disclosure techniques. Alice is not confined to demonstrating properties of at-
tributes contained in a single Digital Credential. She can also demonstrate properties pertaining
to attributes encoded in different Digital Credentials, although some flexibility is lost. The basic
idea, which is due to Brands [10, page 22] and was rediscovered by Camenisch and Stadler [17], is
to apply the techniques for a single Digital Credential to the appropriate product of powers of the
Digital Credential public keys. This works in a straightforward manner if the attributes specified
in the formula are all exponents of the same base number. For example, with h1 = gx11

1 · · · gx1l
l and

h2 = gx21
1 · · · gx2l

l , Alice can demonstrate that α1x11 + x21 = α2 mod q by proving knowledge of a
representation of hα1

1 h2g
−α2
1 with respect to (g2, . . . , gl). For each Digital Credential public key Al-

ice may need to perform an additional proof of knowledge of a representation, for security reasons.
To prove knowledge of a representation of each of many public keys h1, . . . , ht, Alice can prove
knowledge of a representation of the product h1h

α2
2 · · ·hαt

t , for α2, . . . , αt randomly generated by
Bob from a large set.

We leave it at this and refer to Brands [15, Chapter 3] for a treatise of how Alice can demon-
strate arbitrary attribute formulae connecting linear relations by AND, OR, and NOT connectives,
and how she can efficiently demonstrate that an attribute is contained in a large interval.
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Alice Bob

m := nonce|| . . .
m←−−−−−−−−−−−−−−−−−−−−

w1, w2, w3 ∈R Zq

a := gw1+4w2
1 g2w1−3w2

2 gw2
3 hw3

0 h−w1

c := H(h, a, F, m)
ε := 7 − (x1 + 3x2 + 5x3) mod q
δ := 1/ε mod q
r1 := cδ + w1 mod q
r2 := cx3δ + w2 mod q
r3 := cαδ + w3 mod q

h, sign(h), F, (a, r1, r2, r3)−−−−−−−−−−−−−−−−−−−−→
c := H(h, a, F, m)

hr1a
?
= gr1+4r2−10c

1 g2r1−3r2+3c
2 gr2

3 hr3
0

Figure 6: Signed proof of NOT(x1+3x2+5x3 = 7 mod q) AND (3x1+10x2+18x3 = 23 mod q).

4 Cryptographic security measures

Our selective disclosure techniques benefit not only Alice’s privacy. They also enable the CA to
strongly deter lending and discarding of Digital Credentials.

Lending protection

Nothing is easier to copy than a string of bits. To discourage Alice from lending (or giving away
copies of) a personal Digital Credential, such as a drivers’ license or a diploma, the CA can en-
code into the Digital Credential a confidential attribute of Alice. This approach originates from
Dwork, Lotspiech, and Naor [41], who proposed it in the context of discouraging the distribution
of copyrighted materials. An issuer of Digital Credentials for gaining access to gender-specific
online discussions, say, could encode into Alice’s Digital Credential not only a bit indicating her
gender, but also her credit card data. This ensures that Alice cannot give copies of her Digital Cre-
dential to other individuals without disclosing her credit card data to them. This is because signing
Bob’s message requires knowledge of Alice’s entire secret key, which includes all the attributes.
At the same time, Alice’s privacy is protected because she can hide her confidential attribute when
showing the Digital Credential.

Alternative attributes that the CA could encode to discourage lending are Alice’s identity (her
reputation may be damaged if it is disclosed), an electronic coin or some other electronic token
of value (it need not fit into a single attribute), or a secret key of Alice (e.g., to sign e-mail or to
authenticate access to a bank account). In Section 5 we will see that the CAdoes not need to know
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the attribute in order to be able to encode it into the Digital Credential.
Stronger protection against lending requires smartcards or other tamper-resistant devices for

Digital Credential holders. We will examine this in Section 8.
Note that X.509 certificates and other identity certificates do not offer this level of security.

Nothing discourages the holder of an identity certificate from giving away copies of his or her
certificate, unless the holder runs a serious personal risk. This typically means that the certificate
must be accepted in applications with liability issues that are much more complicated than in closed
systems with not a lot at stake. This makes it hard to bootstrap certificate applications in practice.
For example, if identity certificates are to be secure for establishing whether Web site visitors are
over eighteen, the same certificates should also give access to bank accounts or the like.

Encoding unfavorable attributes

The CA can prevent Alice from discarding Digital Credentials that contain unfavorable attributes
by encoding these attributes into Digital Credentials that contain related favorable attributes. In-
formation on late payments at a health club, for example, can be encoded into Alice’s membership
Digital Credential instead of into a separate Digital Credential. Likewise, a mark for drunk driving
can be encoded into Alice’s drivers’ license Digital Credential. This ensures that Alice cannot dis-
card unfavorable attributes without discarding the whole Digital Credential, which would exclude
her from further participation in the system. At the same time, Alice’s privacy is not violated be-
cause she can choose to hide any unfavorable attributes from Bob if he has no clear need to know
them.

To limit Alice’s ability to reuse old Digital Credentials that are more favorable to her, the
CA can assign short validity periods to Digital Credentials. Alternatively, or in addition, the CA
could issue Digital Credentials that cannot be used more than once; see Section 6 for details.
The strongest cryptographic protection is for the CA to issue only a single non-reusable Digital
Credential to Alice, and to recertify it online each time it is shown to a verifier; in Section 5 we
will see how to do anonymous recertification.

Stronger protection against discarding requires the use of smartcards or other tamper-resistant
devices. These can be programmed to show Digital Credentials in the order in which they were
retrieved, and can enter into a suspension mode in case of tampering. See Section 8 for details.

5 Issuing a Digital Credential

Since Alice reveals the Digital Credential public key and the CA’s digital signature when showing
a Digital Credential, these two elements must be statistically uncorrelated to the information that
the CA sees when it issues the Digital Credential, even if the CA tries to cheat. At the same time,
the CA must be able to encode the desired attributes into the secret key of the Digital Credential,
even if Alice tries to cheat. We now examine an issuing protocol that achieves these two goals. No
insight is given into why the protocol is secure; see Brands [15, Chapter 4] for this. As mentioned,
Alice need not communicate over an anonymous channel; in fact, in many applications she will be
required to identify herself to the CA.
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Basic issuing protocol

In the following issuing protocol, Alice will obtain the CA’s signature on a public key h �= 1 of the
form

(gx1
1 · · · gxl

l h0)
α1 ,

where α1 ∈ Z
∗
q is a blinding factor chosen by Alice during the protocol execution. This form is

different from that considered in Sections 2 and 3, in that the blinding factor, α1, affects all the
components of Alice’s secret key. All the techniques still apply, though:

• In the same way as in Section 3, h reveals no information about x1, . . . , xl: for any h ∈ Gq

and any attribute tuple (x1, . . . , xl), there is exactly one blinding factor α1 ∈ Zq that would
make the match. (The case gx1

1 · · · gxl
l h0 = 1 can be excluded.) Since Alice generates α1 at

random and keeps it secret, no attribute information leaks.

• With z0 := α1 and zi := xiα1 mod q, for all i ∈ {1, . . . , l}, demonstrating that x1 =
βx2+γ mod q, say, is equivalent to demonstrating that (z1 = βz2+γz0) AND NOT(z0 = 0).
(Having Alice demonstrate that α1 �= 0 mod q is preferable over having Bob check that
h �= 1, for a highly technical reason; see Brands [15, Section 5.1.2].) More generally, our
showing protocol techniques still apply.

In the issuing protocol, the CA must know the discrete logarithm of each gi with respect to a
random base g0 ∈ Gq. Hereto it generates in the key set-up phase l numbers y1, . . . , yl at random
from Zq, and computes gi := gyi

0 for all i ∈ {1, . . . , l}. In the same way, it generates h0 := gx0
0

for a random x0 ∈ Zq. The public key of the CA is g1, . . . , gl, h0 and its secret key is y1, . . . , yl, x0.
The Digital Credential verification relation is defined as

c′0 = H(h, g
c′0
0 hr′0),

where (c′0, r
′
0) is the CA’s digital signature.3 The Digital Credential issuing protocol is as follows:

Step 1. The CA generates a random number w0 ∈ Zq, and sends a0 := gw0
0 to Alice.

Step 2. Alice generates three random numbers α1 ∈ Z
∗
q and α2, α3 ∈ Zq. She then computes

h := (gx1
1 · · · gxl

l h0)
α1 , c′0 := H(h, gα2

0 (gx1
1 · · · gxl

l h0)
α3a0), and sends c0 := c′0 − α2 mod q

to the CA.

Step 3. The CA sends r0 := (w0 − c0)/(x0 + x1y1 + · · ·+ xlyl) mod q to Alice.

Alice accepts if and only if a0 = gc0
0 (gx1

1 · · · gxl
l h0)

r0 . If this verification holds, she computes
r′0 := (r0 + α3)/α1 mod q. See Figure 7 for the resulting protocol.

If Alice follows the issuing protocol and accepts, then the following holds: for any Digital
Credential public key h and any CA signature (c′0, r

′
0) (Alice reveals these to Bob), and for any

(a0, c0, r0) satisfying gc0
0 (gx1

1 · · · gxl
l h0)

r0 = a0 (this is what the CA sees in the issuing protocol
execution) there is exactly one choice of blinding factors (α1, α2, α3) that would make the match.
Therefore, the public key and the CA’s signature that Alice reveals in the showing protocol do

3Technically, (c′0, r
′
0) is not a signature on h but a secret-key certificate, a notion originating from Brands [14]; see

also Brands [15, Section 2.6.2].
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Alice CA

w0 ∈R Zq

a0 := gw0
0

a0←−−−
α1 ∈ Z

∗
q

α2, α3 ∈R Zq

h := (gx1
1 · · · gxl

l h0)
α1

c′0 := H(h, gα2
0 (gx1

1 · · · gxl
l h0)

α3a0)
c0 := c′0 − α2 mod q

c0−−−→
r0 := (w0 − c0)/(x0 + x1y1 + · · · + xlyl) mod q

r0←−−−
a0

?
= gc0

0 (gx1
1 · · · gxl

l h0)
r0

r′0 := (r0 + α3)/α1 mod q

Figure 7: Basic issuing protocol.

not enable Bob and the CA to find out in which issuing protocol execution that Digital Credential
was issued. In particular, even if Alice identified herself to the CA, the Digital Credential show-
ing cannot be traced to her identity. More generally, Bob and the CA cannot infer more than that
the individual who showed the Digital Credential is one of all the applicants that requested Dig-
ital Credentials for attributes satisfying the attribute property that Alice disclosed in the showing
protocol.

Alice can preprocess almost all her computations. In addition, Alice may prefer to skip the
verification of r0. The CAcannot leak information through an incorrect r0, because Bob never sees
r0, only its blinded form r ′

0. In fact, Bob will not be able to determine whether Alice or the CA is
the source of incorrect Digital Credential data supplied in the showing protocol.

This protocol is a modification of a protocol by Brands [13]. In contrast to the original version,
the modified protocol allows the CA to run different executions in parallel in an arbitrary fashion;
see Brands [15, Section 4.4.2]. The modification, which is brought about by swapping the chal-
lenge and the response in the Digital Credential verification relation, is due to Schoenmakers [53],
who proposed it in the context of the electronic cash withdrawal protocol of Brands [12].

Note that different versions of the same Digital Credential are unlinkable, because Alice gen-
erates (α1, α2, α3) independently at random in each execution of the issuing protocol.

Issuing protocol with attribute hiding

In the basic issuing protocol, the CA must know (x1, . . . , xl) in order to form its response, r0. The
following issuing protocol gives the CA the ability recertify previously issued Digital Credentials
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and to issue new ones without knowing the attributes they contain. This is useful when attributes
are verified by Registration Authorities that rely on the CA for certification but do not want it to
know the attributes, and when the CA wants to deter lending and discarding of Digital Creden-
tials. It can also be used in all kinds of applications, for example to increment counters in loyalty
schemes. The protocol is based on a protocol by Chaum and Pedersen [35] for demonstrating the
equality of two discrete logarithms, and was first used by Brands [10, 11] for the special case l = 1
in order to design an off-line electronic cash scheme.

The CA’s digital signature on a Digital Credential public key h �= 1 this time consists of three
elements, z′ ∈ Gq, c′0 ∈ Zq, and r0 ∈ Zq, satisfying

c′0 = H(h, z′, g
r′0
0 h

−c′0
0 , hr′0(z′)−c′0).

This time, Alice must know z := (gx1
1 · · · gxl

l h0)
x0 . To enable Alice to compute z herself, the CA

publishes (gx0
1 , . . . , gx0

l , hx0
0 ) together with the rest of its public key. The issuing protocol is as

follows:

Step 1. The CAgenerates a random number w0 ∈ Zq, forms a0 := gw0
0 and b0 := (gx1

1 · · · gxl
l h0)

w0 ,
and sends (a0, b0) to Alice.

Step 2. Alice generates a random number α1 ∈ Z
∗
q and two random numbers α2, α3 ∈ Zq. She

then computes h := (gx1
1 · · · gxl

l h0)
α1 , z′ := zα1 , a′

0 := hα2
0 gα3

0 a0, b′0 := (z′)α2hα3bα1
0 ,

c′0 := H(h, z′, a′
0, b

′
0), and sends c0 := c′0 + α2 mod q to the CA.

Step 3. The CA sends r0 := c0x0 + w0 mod q to Alice.

Alice computes r′0 := r0 + α3 mod q, and accepts if and only if a′
0b

′
0 = (g0h)r′0(h0z

′)−c′0 . (This
verification relation is essentially the two separate verification relations for a0 and b0 batched into
one.) The resulting protocol is depicted in Figure 8.

To hide (x1, x2), say, Alice at the start of the protocol sends gx1
1 gx2

2 gβ
l to the CA, for a random

β ∈ Zq. This is her contribution to gx1
1 · · · gxl

l ; note that the CA needs it to form b0. In addition,
she sends a signed proof of knowledge of a representation of gx1

1 gx2
2 gβ

l with respect to (g1, g2, gl);
this could also demonstrate an attribute property, if the CA so desires. The CA can multiply in
gx3
3 · · · gxl−1

l−1 by itself when forming b0, for attributes x3, . . . , xl−1.
To have a previously issued Digital Credential refreshed, Alice shows it to the CA in the same

way as she would show it to Bob. That is, she sets up an anonymous channel with the CA and
sends h = (gx1

1 · · · gxl
l h0)

α1 , the CA’s signature on h, and a signed proof (possibly demonstrating
an attribute property). The CAuses h in a new issuing protocol execution, in place of gx1

1 · · · gxl
l h0.

Alice obtains a new signature on hβ = (gx1
1 · · · gxl

l h0)
α1β, for a new blinding factor β �= 0 mod q,

and so the encoded attributes remain intact. Note that any lending and discarding protections
remain intact as well.

In comparison to the basic issuing protocol, Digital Credentials in the new issuing protocol are
larger and more costly to verify, and Alice’s computation of bα1

0 in Step 2 cannot be preprocessed.
In light of this, the basic issuing protocol is preferable whenever the additional properties are not
needed.
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Alice CA

w0 ∈R Zq

a0 := gw0
0

b0 := (gx1
1 · · · gxl

l h0)
w0

a0, b0←−−−−
α1 ∈ Z

∗
q

α2, α3 ∈ Zq

h := (gx1
1 · · · gxl

l h0)
α1

z′ := zα1

a′
0 := hα2

0 gα3
0 a0

b′0 := (z′)α2hα3bα1
0

c′0 := H(h, z′, a′
0, b

′
0)

c0 := c′0 + α2 mod q
c0−−−−→

r0 := c0x0 + w0 mod q
r0←−−−−

r′0 := r0 + α3 mod q

a′
0b

′
0

?
= (g0h)r′0(h0z

′)−c′0

Figure 8: Issuing protocol with attribute hiding.

6 Limited-show Digital Credentials

Cinema tickets, stamps, coins, and many other tokens are not reusable; showing them means giving
them away or making them unusable. Likewise, a drug prescription in general is not usable for
more than a limited number of doses, and an access card might impose a limit on the number
of times Alice can gain access to a network or to a building. All these physical objects can be
implemented electronically using Digital Credentials, but what stops Alice from reusing her Digital
Credentials as often as she pleases? Code transformation methods raise the barrier for those trying
to reverse-engineer the client software, but typically it will be too dangerous for the CA to rely
exclusively on software obfuscation methods to deter unauthorized reuse.

Limiting reuse of Digital Credentials

The CA has three basic measures at its disposal to deter unauthorized reuse of Digital Credentials:

• Require Bob to clear each transaction online with a central party (possibly the CA itself) that
keeps track of the number of times each Digital Credential has been shown. This measure
has the advantage of preventing fraud rather than merely deterring it. On the downside, third
party authorization is a bottleneck in many applications, resulting in transaction delays and
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high peak load. Also, the cost of the clearing infrastructure might be prohibitive. Consider,
for example, a micropayment system in which each electronic coin must be authorized on-
line. Note that the central database does not scale well, because it should be infeasible to
spend copies of the same coin simultaneously at different service providers.

• Provide Alice with a tamper-resistant device, such as a smartcard, that does not cooperate
in showing a Digital Credential more times than allowed. This measure avoids the bottle-
neck of online authorization, but the cost of the devices may be significant and a logistical
infrastructure is needed for distributing them. Also, criminals may find it worth their while
to invest large sums of money into breaking the tamper-resistance of a device, especially if
they can do uncontrollable and untraceable damage.

• Issue Digital Credentials in such a way that Alice can be identified by a central party if and
only if she shows a Digital Credential more times than allowed. Digital Credentials with
this property are called limited-showDigital Credentials. This measure does not require Bob
to have an online connection with a central party, although Bob will still need to submit
protocol data afterwards to enable the central party to detect and trace fraud.

(Another measure is for the CA to encode a verifier identifier into Alice’s Digital Credential, so that
she can only show it to that verifier; this measure is too inflexible in many applications, though.)
The first two measures have real-world analogues: they are widely applied today to ensure that
multi-use physical tokens are not reused too often. The third security measure has no direct real-
world analogue: showing a physical object twice does not reveal more information than showing it
once. As we have seen in Section 4, the third measure offers extra security benefits that cannot be
achieved by online clearing. For increased security, the CA might want to resort to a combination
of various measures. For example, it may be preferable to combine the second and third measures,
and the CA might want to blacklist Digital Credentials that have been shown too often by adding
them to a Credential Revocation List.

For Digital Credentials, the cryptographic design of the first measure is straightforward. This
is not true for the second security measure, since tamper-resistant devices act on behalf of the CA
and their internal operations cannot be inspected by their holders; consequently, they cannot be
trusted to protect the privacy of their holders anymore than the CA can. See Section 8 for details.

On now to the design of limited-show Digital Credentials. Note that Bob learns new infor-
mation each time Alice shows the same Digital Credential; the presence of the nonce in Bob’s
message ensures that Alice’s signed proof differs each time. This can be exploited to design Digi-
tal Credentials satisfying the following two properties:

• One signed proof of Alice does not reveal any information about the attributes beyond what
Alice voluntarily discloses.

• Two signed proofs contain enough information for a central party to compute all the at-
tributes that the CA encoded into Alice’s Digital Credential.

Consequently, if the CAencodes into each of Alice’s Digital Credentials an identifier attribute (e.g.,
a Social Security Number, her name, or the number of an account that Alice uses for withdrawing
Digital Credentials on an ongoing basis), then Alice can be traced if she reuses a Digital Credential.
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As with our cryptographic measures to protect against lending and discarding, limited-show Digital
Credentials do not violate privacy, because Alice can hide her identifier attribute when showing a
Digital Credential.

Figure 9: Alice reuses a one-show Digital Credential.

See Figure 9 for a scenario in which Alice shows her one-show demographic Digital Credential
to both a medical office and a business.
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Basic one-show Digital Credentials

We start with a simple solution that does not accomplish everything we want, but goes a long way.
Consider the example protocol in Figure 6. Alice’s responses satisfy

hr1a = gr1+4r2−10c
1 g2r1−3r2+3c

2 gr2
3 hr3

0 .

Suppose that Alice demonstrates the same attribute formula a second time for the same Digital
Credential, and in doing so reuses the initial witness a. That is, Alice provides responses (r ∗

1, r
∗
2, r

∗
3)

for a challenge c∗, satisfying

hr∗1a = g
r∗1+4r∗2−10c∗

1 g
2r∗1−3r∗2+3c∗

2 g
r∗2
3 h

r∗3
0 .

If r∗1 = r1 mod q then (r1 + 4r2 − 10c, 2r1 − 3r2 + 3c, r2, r3) and (r∗1 + 4r∗2 − 10c∗, 2r∗1 − 3r∗2 +
3c∗, r∗2, r

∗
3) are two different representations of hr1a with respect to (g1, g2, g3, h0), since c and c∗

are the outcomes of a collision-intractable hash function with different message inputs. According
to Property 1 it is infeasible to find two representations of the same number, and so it must be that
r∗1 �= r1 mod q. Consequently, h equals

g
1+4(r∗2−r2)/(r∗1−r1)−10(c∗−c)/(r∗1−r1)
1 g

2−3(r∗2−r2)/(r∗1−r1)+3(c∗−c)/(r∗1−r1)
2 g

(r∗2−r2)/(r∗1−r1)
3 h

(r∗3−r3)/(r∗1−r1)
0 .

Again owing to Property 1, it must be that

x1 = 1 + 4(r∗2 − r2)/(r∗1 − r1) − 10(c∗ − c)/(r∗1 − r1) mod q

x2 = 2 − 3(r∗2 − r2)/(r∗1 − r1) + 3(c∗ − c)/(r∗1 − r1) mod q

x3 = (r∗2 − r2)/(r∗1 − r1) mod q

α = (r∗3 − r3)/(r∗1 − r1) mod q

Therefore, Alice’s entire secret key can be computed from the information that she discloses in
two showing protocol executions using the same Digital Credential, provided she can be made to
reuse her initial witness. This we can accomplish by making the following design change. In step
2 of the issuing protocol, when forming c′0 Alice must hash along an initial witness a for use in
the showing protocol. In this manner, the CA’s digital signature binds a single initial witness to
the Digital Credential, even though the CA never sees it. The pair (h, a) can be thought of as a
one-time Digital Credential public key. Bob uses the initial witness that Alice hashed along when
obtaining the Digital Credential.

The CA in the deposit phase registers (a hash of) the one-time Digital Credential public key
and the signed proof into a database. In addition, it checks the freshness of Bob’s nonce to avoid
multiple deposits of the same Digital Credential with respect to the same challenge. Note that the
CA need not store the entire signed proof in order to be able to trace fraud. In the example, r3 and
c are not needed to compute x3. More generally, the CA needs to store for each deposited Digital
Credential merely two numbers in Zq and a hash of the Digital Credential public key, regardless of
the formula complexity and the number of encoded attributes; see Brands [15, Section 5.4.1].

If the CA uses the second Digital Credential issuing protocol in Section 5, then it can encode
Alice’s identifier without seeing it. In this case, the ability of the CA to compute Alice’s identifier
is evidence that Alice’s Digital Credential has been shown too many times.
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To incite Bob to deposits the protocol transcript to the CA (or another central party) in a timely
fashion, for fraud detection, Bob could be made liable for contributing to delays. Alternatively, the
central party could provide a financial reward for each signed proof, or a penalty could result if
audits reveals a discrepancy between the number of served customers and the number of deposited
transcripts.

An electronic cash system

We now have all the tools available to design a simple off-line electronic cash system. The follow-
ing system is in essence the same as that proposed by Brands [10, 11]. The CA is a bank, Alice
is a party with a bank account who wants to make payments, and Bob is a service provider and
another acceptor of electronic cash. Each electronic coin is a Digital Credential containing two
attributes: x1 identifies the account from which the coin is withdrawn, and x2 is the coin denom-
ination. (Other pertinent data, such as an expiry date and a currency, may be included into x2 as
well.)

In the withdrawal protocol, Alice receives the bank’s signature on a coin public key h =
gz1
1 gz2

2 hz0
0 , where z1 = x1α1 mod q, z2 = x2 α1 mod q, and z0 = α1. Alice may withdraw multiple

coins of different denominations in parallel. The bank moves the total amount from Alice’s bank
account into a float account.

To spend a coin to Bob, Alice discloses y2 := x2 and demonstrates the attribute formula

(z2 = y2z0 mod q) AND NOT(z0 = 0)

by giving a signed proof. Hereto she proves knowledge of her representation, (1/α mod q,−x1),
of gy2

2 h0 with respect to (h, g1). The challenge c should specify at least a nonce and Bob’s account,
and optionally a description of the transaction terms or other data. Multiple coins may be needed
to make up the payable amount; all coin payments can share the same challenge, provided all the
initial witnesses are hashed along.

The resulting protocols are depicted in Figures 10 and 11, respectively.
At the end of each day, say, Bob deposits all the received “coins” (more accurately, payment

transcripts). The bank verifies the deposited coins and, assuming there are no double-deposits,
credits Bob by moving the total amount due from the float account into the account specified by
the signed proof. The bank requires that Bob’s challenge message include the concatenation of a
nonce and Bob’s account number, so that it can distinguish between double-spending and double-
depositing. Double-spending is a case of payer fraud for which Bob cannot reasonably be held
liable. Double-depositing is either a fraud or a fault-tolerance feature; in either case the bank will
not redeem Bob more than once. Note that wire-tappers and thieves cannot deposit Bob’s coins
into another account.

One-show Digital Credentials with selective disclosure

The basic construction of one-show Digital Credentials requires Alice to know already in the is-
suing protocol which attribute property she will demonstrate in the showing protocol. This does
not work when Alice must be able to choose an attribute property at the moment of showing the

24



Alice Bank

w0 ∈R Zq

a0 := gw0
0

a0←−−−−−−
α1 ∈R Z

∗
q

α2, α3, w1, w2 ∈R Zq

h := (gx1
1 gx2

2 h0)
α1

a := hw1gw2
1

c′0 := H(h, a, a0g
α2
0 (gx1

1 gx2
2 h0)

α3)
c0 := c′0 − α2 mod q

c0−−−−−−→
r0 := (w0 − c0)/(x0 + x1y1 + x2y2) mod q

r0←−−−−−−
gc0
0 (gx1

1 gx2
2 h0)

r0
?
= a0

r′0 := (r0 + α3)/α1 mod q

Figure 10: Withdrawal Protocol.

Digital Credential, because her initial witness depends on the attribute property. In particular, it
cannot be used to realize the scenario in Figure 9. We now explain how to get around this.

In Step 2 of the issuing protocol, instead of including a formula-dependent initial witness Alice
hashes along a “generic” one, a∗ := gw1

1 · · · gwl
l h

wl+1
0 hwl+2 , for random w1, . . . , wl+2 ∈ Zq. In the

showing protocol, Alice in addition sends to Bob up to l + 1 correction factors, e1, . . . , el+1 ∈
Zq. These serve to adjust a∗ so that the representation she knows of the adjusted a∗ is suitable
to compute the signed proof in the manner explained in Section 3. Here is how Alice would
demonstrate two of the example formulae discussed in Section 3, where we assume for simplicity
that h = gx1

1 gx2
2 gx3

3 hα1
0 rather than h = (gx1

1 gx2
2 gx3

3 h0)
α1 :

• To demonstrate (x1 = 2x3 +3) AND (x2 = 4x3 +5), Alice must use an initial witness of the
form g2w1

1 g4w1
2 gw1

3 hw2
0 , as we have seen in Figure 5. If Alice sets e1 := w1−2w3 mod q, e2 :=

w2 − 4w3 mod q, and e3 := w5, then the adjusted initial witness a = a∗/ge1
1 ge2

2 he3 equals
g2w3
1 g4w3

2 gw3
3 hw4

0 , which is of the right form. The verification relation in Figure 5 changes
into hc(a∗/ge1

1 ge2
2 he3) = g2r1+3c

1 g4r1+5c
2 gr1

3 hr2
0 . See Figure 12 for the revised protocol.

• To demonstrate the formula NOT(x1 + 3x2 + 5x3 = 7) AND (3x1 + 10x2 + 18x3 = 23),
Alice must use an initial witness of the form gw1+4w2

1 g2w1−3w2
2 gw2

3 hw3
0 h−w1 , as we have seen

in Figure 6. If Alice sets e1 := w1 + w5 − 4w3 mod q and e2 := w2 + 2w5 + 3w3 mod q,
then the adjusted initial witness a = a∗/ge1

1 ge2
2 equals g−w5+4w3

1 g−2w5−3w3
2 gw3

3 hw4
0 hw5 , which

is of the right form. The verification relation in Figure 5 changes into hr1(a∗/ge1
1 ge2

2 ) =
gr1+4r2−10c
1 g2r1−3r2+3c

2 gr2
3 hr3

0 . See Figure 13 for the revised protocol.
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Alice Bob

m := nonce||account|| . . .
m←−−−−−−−−−−−−−−−−−−

c := H(h, a, m)
r1 := c/α1 + w1 mod q
r2 := −cx1 + w2 mod q

(h, a), (c′0, r
′
0), x2, (r1, r2)−−−−−−−−−−−−−−−−−−→

c′0
?
= H(h, a, g

c′0
0 hr′0)

c := H(h, a, m)

h−r1a
?
= gr2

1 g−x2c
2 h−c

0

Figure 11: Payment Protocol.

Note that Alice’s correction factors are all hashed along when forming the challenge for the
showing protocol. Now, consider what happens if Alice reuses the same one-show Digital Creden-
tial, first demonstrating the first example formula, F1, and then the second, F2. In the first showing
protocol execution, Bob obtains (c, e1, e2, e3, r1, r2) such that

hc−e3a∗ = g2r1+3c+e1
1 g4r1+5c+e2

2 gr1
3 hr2

0 .

In the second showing, Bob obtains (c∗, e∗1, e
∗
2, r

∗
1, r

∗
2, r

∗
3) such that

hr∗1a∗ = g
r∗1+4r∗2−10c∗+e∗1
1 g

2r∗1−3r∗2+3c∗+e∗2
2 g

r∗2
3 h

r∗3
0 .

It follows that

hc−e3−r∗1 = g
2r1+3c+e1−(r∗1+4r∗2−10c∗+e∗1)
1 g

4r1+5c+e2−(2r∗1−3r∗2+3c∗+e∗2)
2 g

r1−r∗2
3 h

r2−r∗3
0 .

Therefore, Bob can determine Alice’s secret key by raising both sides of the equation to the power
1/(c − e3 − r∗1) mod q, unless c − e3 − r∗1 = 0 mod q. The latter can happen only if the expres-
sions in the exponents are all equal to 0 mod q, because otherwise Bob has found two different
representations of the number 1. This explains why the correction factors must be hashed along
into c; if Alice could select c in an arbitrary way, subject only to the condition that it is unique in
each showing protocol execution, then she could force all the exponent expressions to be zero, and
Bob would learn no more than the aggregate of what Alice selectively disclosed in each individual
protocol execution.

In general, Alice can demonstrate to Bob any attribute formula connecting linear relations by
AND, OR, and NOT connectives; see Brands [15, Section 5.4.2]. In the random oracle model it
can be proved that if c is a strong hash of at least (h, a∗), a unique formula description, and all the
correction factors, then with overwhelming probability Alice’s secret key can be computed upon
reuse of her Digital Credential.
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Alice Bob

m := nonce|| . . .
m←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

e1 := w1 − 2w3 mod q
e2 := w2 − 4w3 mod q
e3 := w5

c := H((h, a∗), F1, (e1, e2, e3), m)
r1 := cx3 + w3 mod q
r2 := cα + w4 mod q

(h, a∗), sign(h, a∗), (e1, e2, e3), F1, (a, r1, r2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
c := H((h, a∗), F1, (e1, e2, e3), m)

hc−e3a∗ ?
= g2r1+3c+e1

1 g4r1+5c+e2
2 gr1

3 hr2
0

Figure 12: One-show signed proof of (x1 = 2x3 + 3) AND (x2 = 4x3 + 5).

Increasing the threshold

There is nothing magical about a threshold value of 1. To ensure that Alice’s secret key can
be computed if and only if Alice uses a Digital Credential more than t > 1 times, the Digital
Credential should comprise t generic initial witnesses. When showing the Digital Credential,
Alice uses one of the generic initial witnesses that she has not yet used. Any t + 1 uses of the
same t-show Digital Credential imply the reuse of one of the generic initial witnesses.

7 Privacy for verifiers

Bob can form a signed proof that hides a part or all of the attribute property that Alice disclosed
to him. This is analogous to Bob crossing out data fields on a paper-based certificate that Alice
presented to him before he sends a copy to a central party. This prevents the central authority from
learning information that Bob’s clients disclose, which may be in Bob’s interest for competitive or
other reasons.

The idea is to hash along into Bob’s challenge a description of the property that Bob wants
to disclose rather than the property that Alice is demonstrating, and to make it appear as if Alice
provided responses that demonstrate Bob’s property. By way of example, consider the following
enhancement of the electronic cash system described in Section 6. Each of Alice’s electronic coins
encodes an additional attribute, x3, that specifies Alice’s age or other personal data that may have
value to merchants (e.g., for inventory management, to determine target markets, or to determine
whether customers are legally authorized to conduct a transaction). When paying Bob, Alice
should hide x1 and must disclose x2, as in the basic system. In addition, she can opt to disclose
x3 to Bob, for example in return for a discount. In the withdrawal protocol, Alice obtains the
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Alice Bob

m := nonce|| . . .
m←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

e1 := w1 + w5 − 4w3 mod q
e2 := w2 + 2w5 + 3w3mod
c := H((h, a∗), F2, (e1, e2), m)
r1 := cδ − w5 mod q
r2 := cx3δ + w3 mod q
r3 := cαδ + w4 mod q

(h, a∗), sign(h, a∗), (e1, e2), F2, (a, r1, r2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

c := H((h, a∗), F2, (e1, e2), m)

hr1a∗ ?
= gr1+4r2−10c+e1

1 g2r1−3r2+3c+e2
2 gr2

3 hr3
0

Figure 13: One-show signed proof of NOT(x1 +3x2 +5x3 = 7) AND (3x1 +10x2 + 18x3 = 23).

CA’s signature on a one-time public key (h, a) where h = (gx1
1 gx2

2 gx3
3 h0)

α1 and a = hw1gw2
1 gw3

3

for random w1, w2, w3 ∈ Zq. Figures 14 and 15 depict the two possible payment protocols, in
line with the techniques described in the previous section. In the second payment protocol, w3 is
Alice’s correction factor, as explained in the previous section. Note that to reveal x3, Alice in effect
sends to Bob the components x3, w3 that she uses to compose r3 in the case she wants to hide x3.

Now, if Alice discloses x3, Bob should be able to end up with a payment transcript that looks
like it came from an execution of the payment protocol in which Alice hides x3 from Bob. To this
end, we make the following modifications to the two payment protocols:

• In the first payment protocol, Alice and Bob form c as H((h, a), x2, t, m), where t := H(s)
for a random s ∈ Zq generated by Bob.

• In the second payment protocol, Alice and Bob form c as H((h, a), x2, t, m), where t :=
H((x3, w3), s) for a random s ∈ Zq generated by Bob. Also, Bob computes a fake “response”
r3 := −cx3 + w3 mod q from the pair (x3, w3) disclosed by Alice.

The role of t is to ensure that (x3, w3) is included in Bob’s challenge in the second payment
protocol, as required for security, but not in a manner visible to others. In both cases, Bob deposits
(h, a), (c′0, r

′
0), x2, t, m, (r1, r2, r3) to the bank. Clearly, the bank cannot distinguish whether Bob’s

payment transcript originated from the first or the second payment protocol; the challenge and the
responses in Bob’s transcript look exactly alike in both cases. By opening the preimage to t, Alice
and Bob can at any moment later on prove what property Alice demonstrated to Bob.

For a general treatment, see Brands [15, Section 5.3].
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Alice Bob

m := nonce||account|| . . .
m←−−−−−−−−−−−−−−−−−−−−−

c := H((h, a), x2, m)
r1 := c/α1 + w1 mod q
r2 := −cx1 + w2 mod q
r3 := −cx3 + w3 mod q

(h, a), (c′0, r
′
0), x2, (r1, r2, r3)−−−−−−−−−−−−−−−−−−−−−→

c′0
?
= H(h, a, g

c′0
0 hr′0)

c := H((h, a), x2, m)

h−r1a
?
= gr2

1 g−x2c
2 gr3

3 h−c
0

Figure 14: Payment Protocol: Reveal x2, hide x3.

8 How to integrate tamper-resistant devices

Nothing we discussed thus far assumes special hardware for Alice or Bob; they are both free to
use any computing device of their liking to retrieve, verify, store, show, and deposit Digital Cre-
dentials. Examples are desktop computers, notebooks, handheld computers, mobile phones, and
smart watches. We will refer to computing devices that do not have tamper-resistant components to
protect the security interests of the CA as software-only devices. Using software-only devices has
several advantages: the software running on the devices can be manufactured in-house by anyone,
and can be distributed via the Internet and other networks (no need for physical transportation);
anyone can get into the business of issuing their own kind of Digital Credentials (low start-up
cost); and, it is relatively easy for Alice and Bob to be assured that their software are not acting
in malicious ways that compromise their privacy or security. Primary contributors to the trust that
Alice and Bob can place in their software are compact operating systems, open source code, open
market availability, independent code reviews, digital certification of source code and executables,
and anti-virus and personal firewall software.

Why and how to use smartcards

There is no security benefit for the CA to force Bob to use a special hardware device, with the
exception of a secure time-stamping device in some applications. For Alice, the situation is quite
different. A software-only device cannot prevent Alice from discarding, reusing, lending, or giving
away copies of her Digital Credentials, nor can it prevent other kinds of unauthorized uses. Online
authorization prevents Alice from showing a Digital Credential more times than allowed, but does
not stop other undesirable behavior. Cryptography-only measures have their limitations as well, as
we have seen in Sections 4 and 6.
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Alice Bob

m := nonce||account|| . . .
m←−−−−−−−−−−−−−−−−−−−−−−−−−

c := H((h, a), (x2, x3), w3, m)
r1 := c/α1 + w1 mod q
r2 := −cx1 + w2 mod q

(h, a), (c′0, r
′
0), (x2, x3), w3, (r1, r2)−−−−−−−−−−−−−−−−−−−−−−−−−→

c′0
?
= H(h, a, g

c′0
0 hr′0)

c := H((h, a), (x2, x3), w3, m)

h−r1a
?
= gr2

1 g−x2c
2 g−x3c+w3

3 h−c
0

Figure 15: Payment Protocol: Reveal (x2, x3).

Any Digital Credential system can be implemented using smartcards or other tamper-resistant
devices suitable for mass distribution to individuals. These devices can offer strong protection
against loss, theft, extortion, lending, copying, and discarding of Digital Credentials, and can
prevent all kinds of other unauthorized behavior; see Brands [15, Sections 1.1.6 and 6.4.4.].

However, implementing Alice’s part of the protocols entirely in a smartcard is not preferable:

• From a privacy perspective, care must be taken in the way tamper-resistant devices are used.
It is virtually impossible to verify that a smartcard does not leak personal data stored inside
the card. Even if the issuer and the manufacturer of the devices could be trusted, implement-
ing our protocols entirely in smartcards might not preserve privacy. Namely, the quality and
security of noise generators cannot be guaranteed, and pseudorandom number generators de-
rive their outputs from a seed value that is generated by another party than the device holder;
this renders any blinding operations ineffective, since the whole point of blinding factors is
their secrecy.

• There are serious limitations to the functionality that can be squeezed into a smartcard. Great
care must be taken that the addition of complex circuitry and software does not introduce
weaknesses in the tamper-resistance characteristics of the hardware. With smartcard compo-
nents already cramming for space, adding circuitry adversely affects smartcard reliability. A
“dead” card at the very least inconveniences and frustrates its holder, and the consequences
can be dramatic. Furthermore, smartcards and other devices that do not have their own
display and keyboard are vulnerable to fake-terminal attacks.

In light of these considerations, smartcards should not be used as stand-alone devices, but only in
conjunction with software-only computing devices. The combination of a tamper-resistant device
with a software-only device is natural in many settings. For example, a smartcard can be used
over the Internet only when connected to a desktop computer, a mobile phone, or some other
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device. If Alice’s computer has a keyboard and a display, she can enter her password, PIN, or
biometric using the keyboard, and read transaction information from her computer’s display. By
routing all the communications from and to the smartcard through the computer, unexpected data
transmissions (i.e., separate from the issuing and showing protocol executions) from and to the
smartcard can be prevented.

This is not sufficient to guarantee privacy, though. Alice’s tamper-resistant device can try to
leak information in the issuing and showing protocols:

• In case Alice’s device engages in an interactive protocol, it can leak one or more bits by halt-
ing during the protocol execution. For example, one bit can be leaked by deciding whether
or not to respond to a challenge before a time-out. This is called the halting channel.

• In a similar manner, Alice’s device can leak out bits of information by timing the delay
before transmitting a message; this is called the timing channel.

• A related channel is the computation error channel. Here, Alice’s device deliberately causes
one of its response messages to be incorrect, and encodes information into it.

• Any bits that Alice’s device can freely choose can be used to leak information. This so-
called outflowcannot be detected by Alice’s computer, since it complies with the format
specifications and verification relations specified by the protocol.

Conversely, any data that is subliminally leaked to Alice’s device is called inflow. Inflow can cause
the smartcard to enter a state of suspension or to default in other ways. In general, Alice will be
more concerned about outflow than inflow, since outflow can reveal her smartcard’s identifier, ac-
cess control code, communication and transaction history, attributes, data from other applications,
and so on.

Inflow and outflow are examples of subliminal channels, first studied in the context of public-
key cryptography by Simmons [54, 55] and Desmedt, Goutier, and Bengio [40, Section 5]. They
introduced the idea of using randomization to destroy subliminal channels. In 1988, Chaum [28]
proposed very similar randomization techniques to prevent inflow and outflow in the setting of con-
sumer transactions, particularly electronic cash. Chaum advocated the use of smartcards in con-
junction with software-only devices, a configuration he referred to as the “wallet-with-observer”
setting, and coined the terms inflow and outflow. Chaum’s techniques [28, 33, 35] have numerous
drawbacks, though, that make them unsuitable for practical use. Namely, in Chaum’s wallet-with-
observer approach, the tamper-resistant device simply digitally signs statements requested by the
user-controlled computer, after checking that the validity of these statements based on the attribute
information it maintains. Depending on the application, this can result in enormous damages. For
instance, in a financial application the attacker may claim to have been issued digital bearer bonds
worth huge sums of money, and may be able to impersonate people by assuming arbitrary identity
attributes. Indeed, in the electronic cash system of Chaum and Bos [7, 33], each consumer smart-
card has the power to mint untraceable electronic cash. See Brands [15, Section 6.2.2] for a further
discussion of the drawbacks of Chaum’s wallet-with-observer techniques.

Since in many applications it is completely unacceptable to rely solely on the tamper-resistance
of consumer devices (see, for instance, Kocher [46], Anderson and Kuhn [1, 2], Boneh, DeMillo,
and Lipton [6], Biham and Shamir [4, 5], and Kocher, Jaffe, and Jun [47]), we will resort to other
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techniques to prevent subliminal channels. The improved techniques originate from Brands [10,
11, 13].

Secure integration of smartcards

Our first design goal is to make sure that Alice cannot show a Digital Credential without the
assistance of the smartcard that was issued to her. Hereto the CA encodes into each of Alice’s
Digital Credentials a random attribute, say x1, that is known only to her smartcard. Since the
ability to compute a signed proof implies knowledge of a secret key corresponding to the Digital
Credential public key, this ensures that Alice needs her smartcard’s assistance.

Alice’s smartcard should be able to assist her without revealing x1, since that would enable
Alice to reuse the Digital Credential without the smartcard’s assistance. To see how this can be
achieved, consider the payment protocol in Figure 11. Since Alice does not know x1, she cannot
compute r2 := cx1 + w2 mod q without the assistance of her smartcard. In Figure 10, Alice
forms her initial witness a as hw1gw2

1 . Therefore, if Alice’s smartcard generates w2 and provides
as := gw2

1 to her, then Alice can form a := hw1as, and her smartcard can compute r2 on her behalf.
Note that Alice needs to know hs := gx1

1 in order to verify the CA’s response, r0, as well as the
smartcard’s response, rs; to verify the latter, Alice checks that hc

sas = grs
1 . We will refer to x1 as

the smartcard’s secret key, and to hs as its “public” key.
Looking at the interaction between Alice and her smartcard as a whole, we see that Alice’s

smartcard in effect is proving knowledge of x1 to her by means of the protocol of Figure 2. Since
this protocol does not reveal x1, Alice can get around her smartcard only by physically breaking
its tamper-resistance and extracting x1. Extracting x1 would enable her to double-spend her coins,
but then our one-show technique kicks in: the CA can trace Alice, because it can associate x1 with
Alice. In other words, our smartcard-enhanced electronic cash system offers two levels of security
against double-spending. This is of great importance, since affordable mass consumer devices will
likely never be fully tamper-proof.

The bulk of the workload for the smartcard can be shifted to the CA, by having the latter instead
of the former provide as to Alice during the issuing protocol execution. Hereto the CAand Alice’s
smartcard must share the list of random numbers that the smartcard will deploy. In practice these
numbers may be generated in a pseudorandom fashion from a seed value. See Brands [15, Section
6.5.1] for details.

Privacy protection

This simple construction lays the foundation for Alice’s privacy. Note, for example, that Alice’s
smartcard does not need to know the Digital Credential public key, the attributes (x2, . . . , xl), the
number of encoded attributes, the formula to be demonstrated, or Bob’s message. However, the
construction does not protect against outflow and inflow. Alice’s smartcard can encode its identifier
or another message in the “random” number w2, possibly encrypted under a key of the CA. The CA
can deduct the smartcard’s message from (r2, c) in Bob’s transcript by trying all possible smartcard
secret keys, x1, and checking for a redundancy pattern in the candidate messages. Likewise, Bob
in the showing protocol can cause inflow through its challenge, c, since at least the nonce is under
his control.
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To prevent inflow and outflow, we have Alice randomize on the fly any data from and to her
smartcard that is not fully under her control. In particular, Alice randomizes Bob’s challenge and
her smartcard’s response by adding random numbers before passing them on. She can adjust for
these random numbers by multiplying appropriate powers of g1 and hs into her initial witness, a.
Application of this technique to the simple electronic cash system depicted in Figures 10 and 11
results in the smartcard-enhanced protocols depicted in Figures 16 and 17. Note that Alice used
the blinding factors α4 and α5 to randomize c and rs, respectively.

smartcard Alice Bank

w2 ∈R Zq

as := gw2
1

as−−−−−−→
w0 ∈R Zq

a0 := gw0
0

a0←−−−−−−
α1 ∈R Z

∗
q

α2, α3, w1, α4, α5 ∈R Zq

h := (hsg
x2
2 h0)

α1

a := ash
α4
s hw1gα5

1

c′0 := H(h, a, a0g
α2
0 (hsg

x2
2 h0)

α3)
c0 := c′0 − α2 mod q

c0−−−−−−→
r0 := (w0 − c0)/(x0 + x1y1 + x2y2) mod q

r0←−−−−−−
gc0
0 (hsg

x2
2 h0)

r0
?
= a0

r′0 := (r0 + α3)/α1 mod q

Figure 16: Smartcard-Enhanced Withdrawal Protocol.

It is easy to see that Alice’s smartcard can leak at most one bit via the halting channel, the com-
putation error channel, and the timing channel. This is the best result that can be achieved, since
Alice’s smartcard can always cause a protocol execution to abort by not providing its response. In
practice the maximum leakage is much less than one bit, since an incorrect response or a protocol
abortion could also be caused by incorrect behavior by Alice or by a communication failure. In
fact, any attempt by Alice’s smartcard to leak bits through the halting channel or the computation
error channel is futile, since Bob and the CA cannot distinguish between a fraud by Alice and her
smartcard attempting to leak one bit. Therefore, in practice Alice can omit the verification of both
rs and r0.

This technique to prevent inflow and outflow is highly preferable over that of Chaum [33],
which can only detect inflow and outflow after the fact with low probability. It is also preferable
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smartcard Alice Bob

m := nonce||account|| . . .
m←−−−−−−−−−−−−−−−−−−

c := H(h, a, m)
cs := c + α4 mod q

cs←−−−−−−−
rs := csx1 + w2 mod q

rs−−−−−−−→
as

?
= grs

1 h−cs
s

r1 := −c/α1 + w1 mod q
r2 := rs + α5 mod q

r3 := −cx3 + w3 mod q
(h, a), (c′0, r

′
0), x2, (r1, r2)−−−−−−−−−−−−−−−−−−→

c′0
?
= H(h, a, g

c′0
0 hr′0)

c := H(h, a, m)

h−r1a
?
= gr2

1 g−x2c
2 h−c

0

Figure 17: Smartcard-Enhanced Payment Protocol.

over Chaum’s other outflow prevention technique [28, 35] (also applied by Cramer and Peder-
sen [39]), which in our situation would proceed by letting Alice and her smartcard form a in a
mutually random manner by means of a coin flipping protocol; amongst others, this would seri-
ously degrade the communication and computation complexity.

It can be shown that the view of Alice’s smartcard is statistically independent from the views
of the CA and Bob. Therefore, physical access to the contents of Alice’s smartcard does not help
the CA and Bob to retroactively trace and link her showing protocol executions; all that they can
learn is what Alice willingly discloses. The importance of preventing mutually known informa-
tion that is statistically correlated (other than inflow and outflow) was first argued by Cramer and
Pedersen [39], who also modified Chaum’s protocols to prevent such so-called common coin flips;
their technique does not overcome the security and efficiency drawbacks of Chaum’s techniques,
though.

As shown in Brands [15, Sections 6.3.1., 6.4.1, and 6.4.2], these smartcard techniques can
be made to work in general, regardless of the property of (x2, . . . , xl) that Alice demonstrates
to Bob. The resulting smartcard-enhanced protocols encompass the software-only protocols as a
self-contained subset. This has the advantage that the security protections of the software-only
system apply in the (presumably hypothetical) case that the tamper-resistance of a large number of
smartcards is compromised.

In many applications Alice’s smartcard should be able to make informed decisions as to whether
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to assist her in showing a Digital Credential. That is, Alice should be unable to hide from her smart-
card certain information pertinent to the showing protocol, such as some of the attributes in her
Digital Credential, the property that she intends to demonstrate, or Bob’s message. For example,
if Digital Credentials represent electronic cheques spendable up to a ceiling amount, and Alice’s
smartcard uses an internal balance to represent the amount of cash held by Alice, then Alice should
be unable to lie to her smartcard about the amounts for which she makes out her cheques; after all,
her smartcard must deduct these from its internal balance. Brands [15, Section 6.4.4.] describes
a general technique for tuning the smartcard-enhanced protocols to accommodate any degree of
privacy desired. The basic idea is to let Alice provide the preimage to c to her smartcard, so that
the smartcard can compute c by itself. In Figure 17, Alice would provide (h, a, m). The effect is
that Alice cannot provide incorrect information to her smartcard, because that would result in a
response rs to an incorrect challenge. By defining c as an arbitrary structure of nested hashes of
data fields, the smartcard can be prevented from learning more than than strictly needed.

9 Conclusion

In a computerized world, privacy can be adequately protected only by building it into the archi-
tecture of communication and transaction systems. To ensure that users of the Internet and other
electronic networks cannot be traced at the data transport layer, anonymous communication chan-
nels are needed. In applications where individuals must prove that they are authorized to perform
certain actions, anonymous communication is not enough. Namely, individuals may be identifi-
able at the application layer, through their use of electronic passports and other digital proofs of
authorization.

Digital Credentials were designed to mimic the privacy of cinema tickets, stamps, subway to-
kens, and other non-identifiable authorization proofs. Digital Credentials are much more efficient,
secure, and powerful than their tangible counterparts, and can be used to design a virtually unlim-
ited number of applications. They guarantee privacy in the strongest possible sense: even if all
verifiers, smartcards, and CAs conspire in an active attack, jointly establish secret information in a
preparatory phase, and have unlimited computing power, they cannot learn more than what can be
inferred from the attribute properties that Digital Credential holders voluntarily disclose.

This introductory paper does not cover all the techniques of Brands [15]. Amongst others, the
book also describes techniques based on the RSA problem, and describes how to anonymously
update a Digital Credential, how to show a Digital Credential in zero-knowledge, how to design
a two-move issuing protocol, how to cope with broken connections and self-revocation, how to
protect the CA’s secret key, and so on.

The reader should be aware that the primary design goal of Brands [15] has been practicality,
so as to make Digital Credentials an appealing alternative to identity certificates and other privacy-
invading approaches. In light of this, the Digital Credential protocols were carefully crafted to meet
multiple security objectives at the same time. For example, Alice’s signed proof to Bob serves not
only to prevent replay, it is also exploited to prove the attribute property she discloses to Bob, to
enable the CA to trace limited-show Digital Credentials that are shown too often, to ensure that
Alice cannot show her Digital Credentials without the help of a smartcard, to enable Bob to hide
from the CA a part of the disclosed attribute property, to avoid simulation of the CA’s signature
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(see Brands [15, Section 2.6.2]), and to avoid a delegation attack (see Brands [15, Section 5.1.2]).
The presentation in this introductory paper, however, glosses over many of the security subtleties
and dependencies. Consequently, the compactness of the protocols may lead one to believe that
Digital Credentials have very simple security properties, but the reality is that seemingly innocent
changes (e.g., for optimization purposes) may have far-reaching security implications.
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